First exit from an open set for a matrix-exponential Lévy process
Yu-Ting Chen,
Yu-Tzu Chen and
Yuan-Chung Sheu
Statistics & Probability Letters, 2017, vol. 127, issue C, 104-110
Abstract:
We study the first exit from a general open set for a one-dimensional Lévy process, where the Lévy measure is proportional to a two-sided matrix-exponential distribution. Under appropriate conditions on the Lévy measure, we obtain an explicit solution for the joint distribution of the first-exit time and the position of the Lévy process upon first exit, in terms of the zeros and poles of the corresponding Laplace exponent. The present result complements several earlier works on the use of exit sets for Lévy processes with algebraically similar Laplace exponents, where exits from open intervals are the main focus.
Keywords: First exit problems; Lévy processes; Matrix-exponential distributions; Jump diffusions (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715217301189
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:127:y:2017:i:c:p:104-110
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2017.03.018
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().