EconPapers    
Economics at your fingertips  
 

Imputation in nonparametric quantile regression with complex data

Yanan Hu, Yaqi Yang, Chunyu Wang and Maozai Tian

Statistics & Probability Letters, 2017, vol. 127, issue C, 120-130

Abstract: This paper considers nonparametric quantile regression models for complex data of mixed categorical and continuous variables together with missing values at random (MAR). In consideration of the increasingly popular application of multiple imputation for handling missing data and the advantages of nonparametric quantile regression, we propose an effective and accurate multiple imputation method. The estimation procedure not only does well in modeling with mixed categorical and continuous data, but also makes full use of the entire data set to achieve increased efficiency. The proposed estimator is asymptotically normal. In simulation study, we compare the performance of the multiple imputation method with complete case (CC), Regression imputation and nearest-neighbor imputation methods, and outline advantages and drawbacks of the different methods. Simulation studies show that the proposed multiple imputation method performs better.

Keywords: Complex data; Missing covariates; Multiple imputation; Quantile regression (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715216302164
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:127:y:2017:i:c:p:120-130

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2017.03.003

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:127:y:2017:i:c:p:120-130