EconPapers    
Economics at your fingertips  
 

Estimating conditional means with heavy tails

Liang Peng and Qiwei Yao

Statistics & Probability Letters, 2017, vol. 127, issue C, 14-22

Abstract: When a conditional distribution has an infinite variance, commonly employed kernel smoothing methods such as local polynomial estimators for the conditional mean admit non-normal limiting distributions (Hall et al., 2002). This complicates the related inference as the conventional tests and confidence intervals based on asymptotic normality are no longer applicable, and the standard bootstrap method often fails. By utilizing the middle part of data nonparametrically and the tail parts parametrically based on extreme value theory, this paper proposes a new estimation method for conditional means, resulting in asymptotically normal estimators even when the conditional distribution has infinite variance. Consequently the standard bootstrap method could be employed to construct, for example, confidence intervals regardless of the tail heaviness. The same idea can be applied to estimating the difference between a conditional mean and a conditional median, which is a useful measure in data exploratory analysis.

Keywords: Asymptotic normality; Conditional mean; Extreme value theory; Heavy tail (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715217301232
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:127:y:2017:i:c:p:14-22

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2017.03.023

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:127:y:2017:i:c:p:14-22