On kernel estimation of the second order rate parameter in multivariate extreme value statistics
Yuri Goegebeur,
Armelle Guillou and
Jing Qin
Statistics & Probability Letters, 2017, vol. 128, issue C, 35-43
Abstract:
We introduce a flexible class of kernel type estimators of a second order parameter appearing in the multivariate extreme value framework. Such an estimator is crucial in order to construct asymptotically unbiased estimators of dependence measures, as e.g. the stable tail dependence function. We establish the asymptotic properties of this class of estimators under suitable assumptions. The behaviour of some examples of kernel estimators is illustrated by a simulation study in which they are also compared with a benchmark estimator of a second order parameter recently introduced in the literature.
Keywords: Multivariate extreme value statistics; Second order parameter; Stable tail dependence function (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715217301542
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:128:y:2017:i:c:p:35-43
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2017.04.015
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().