EconPapers    
Economics at your fingertips  
 

Bounds for the normal approximation of the maximum likelihood estimator from m-dependent random variables

Andreas Anastasiou

Statistics & Probability Letters, 2017, vol. 129, issue C, 171-181

Abstract: The asymptotic normality of the Maximum Likelihood Estimator (MLE) is a long established result. Explicit bounds for the distributional distance between the distribution of the MLE and the normal distribution have recently been obtained for the case of independent random variables. In this paper, a local dependence structure is introduced between the random variables and we give upper bounds which are specified for the Wasserstein metric.

Keywords: Maximum likelihood estimator; Dependent random variables; Normal approximation; Stein’s method (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016771521730161X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:129:y:2017:i:c:p:171-181

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2017.04.022

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:129:y:2017:i:c:p:171-181