Asymptotic results for a multivariate version of the alternative fractional Poisson process
Luisa Beghin and
Claudio Macci
Statistics & Probability Letters, 2017, vol. 129, issue C, 260-268
Abstract:
A multivariate fractional Poisson process was recently defined in Beghin and Macci (2016) by considering a common independent random time change for a finite dimensional vector of independent (non-fractional) Poisson processes; moreover it was proved that, for each fixed t≥0, it has a suitable multinomial conditional distribution of the components given their sum. In this paper we consider another multivariate process {M̲ν(t)=(M1ν(t),…,Mmν(t)):t≥0} with the same conditional distributions of the components given their sums, and different marginal distributions of the sums; more precisely we assume that the one-dimensional marginal distributions of the process ∑i=1mMiν(t):t≥0 coincide with the ones of the alternative fractional (univariate) Poisson process in Beghin and Macci (2013). We present large deviation results for {M̲ν(t)=(M1ν(t),…,Mmν(t)):t≥0}, and this generalizes the result in Beghin and Macci (2013) concerning the univariate case. We also study moderate deviations and we present some statistical applications concerning the estimation of the fractional parameter ν.
Keywords: Large deviations; Moderate deviations; Weighted Poisson distribution; First kind error probability (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715217302134
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:129:y:2017:i:c:p:260-268
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2017.06.009
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().