EconPapers    
Economics at your fingertips  
 

Piecewise deterministic Markov processes for scalable Monte Carlo on restricted domains

Joris Bierkens, Alexandre Bouchard-Côté, Arnaud Doucet, Andrew B. Duncan, Paul Fearnhead, Thibaut Lienart, Gareth Roberts and Sebastian J. Vollmer

Statistics & Probability Letters, 2018, vol. 136, issue C, 148-154

Abstract: Piecewise Deterministic Monte Carlo algorithms enable simulation from a posterior distribution, whilst only needing to access a sub-sample of data at each iteration. We show how they can be implemented in settings where the parameters live on a restricted domain.

Keywords: MCMC; Bayesian statistics; Piecewise deterministic Markov processes; Logistic regression (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016771521830066X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:136:y:2018:i:c:p:148-154

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2018.02.021

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:136:y:2018:i:c:p:148-154