Statistical challenges of big brain network data
Moo K. Chung
Statistics & Probability Letters, 2018, vol. 136, issue C, 78-82
Abstract:
We explore the main characteristics of big brain network data that offer unique statistical challenges. The brain networks are biologically expected to be both sparse and hierarchical. Such unique characterizations put specific topological constraints onto statistical approaches and models we can use effectively. We explore the limitations of the current models used in the field and offer alternative approaches and explain new challenges.
Keywords: Big brain network data; Sparsity; Hierarchy; Multiscale; Graph filtration (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715218300658
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:136:y:2018:i:c:p:78-82
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2018.02.020
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().