EconPapers    
Economics at your fingertips  
 

Statistical challenges of big brain network data

Moo K. Chung

Statistics & Probability Letters, 2018, vol. 136, issue C, 78-82

Abstract: We explore the main characteristics of big brain network data that offer unique statistical challenges. The brain networks are biologically expected to be both sparse and hierarchical. Such unique characterizations put specific topological constraints onto statistical approaches and models we can use effectively. We explore the limitations of the current models used in the field and offer alternative approaches and explain new challenges.

Keywords: Big brain network data; Sparsity; Hierarchy; Multiscale; Graph filtration (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715218300658
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:136:y:2018:i:c:p:78-82

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2018.02.020

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:136:y:2018:i:c:p:78-82