Lower bounds for the rate of convergence for continuous-time inhomogeneous Markov chains with a finite state space
A.I. Zeifman,
V.Yu. Korolev,
Ya.A. Satin and
K.M. Kiseleva
Statistics & Probability Letters, 2018, vol. 137, issue C, 84-90
Abstract:
An approach is proposed to the construction of general lower bounds for the rate of convergence of probability characteristics of continuous-time inhomogeneous Markov chains with a finite state space in terms of special “weighted” norms related to total variation. We study the sharpness of these bounds for finite birth–death–catastrophes process and for a Markov chain with large output intensity from a state.
Keywords: Continuous-time Markov chains; Inhomogeneous Markov chains; Ergodicity bounds; Special norms (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715218300038
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:137:y:2018:i:c:p:84-90
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2018.01.001
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().