Tests of fit using spacings statistics with estimated parameters
Martin T. Wells,
Sreenivasa R. Jammalamadaka and
Ram C. Tiwari
Statistics & Probability Letters, 1992, vol. 13, issue 5, 365-372
Abstract:
Let X1,..., Xn be a sequence of independent and identically distributed random variables with an unknown underlying continuous cumulative distribution function F. Relative to this unknown distribution function suppose one would like to test a null hypothesis concerning the goodness of fit of F to some distribution function using symmetric functions of sample spacings. In some applications the null hypothesis is simple while in others it may be composite. In this article we present the large sample theory of tests based on symmetric functions of sample spacings under composite null hypotheses and contiguous alternatives. It is shown that these test statistics have the same asymptotic distribution in the case when parameters must be estimated from the sample as in the case when parameters are specified. Optimal goodness of fit tests are also constructed for these hypotheses.
Keywords: Spacings; tests; goodness; of; fit; tests; nuisance; parameters; optimal; tests; Pitman; efficiency (search for similar items in EconPapers)
Date: 1992
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0167-7152(92)90109-I
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:13:y:1992:i:5:p:365-372
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().