A revisit to asymptotic ruin probabilities for a bidimensional renewal risk model
Jinzhu Li
Statistics & Probability Letters, 2018, vol. 140, issue C, 23-32
Abstract:
Recently, Yang and Li (2014) studied a bidimensional renewal risk model with constant force of interest and dependent subexponential claims. Under the special Farlie–Gumbel–Morgenstern dependence structure and a technical moment condition on the claim-number process, they derived an asymptotic expansion for the finite-time ruin probability. In this paper, we show that their result can be extended to a much more general dependence structure without any extra condition on the renewal claim-number process. We also give some asymptotic expansions for the corresponding infinite-time ruin probability within the scope of extended regular variation.
Keywords: Asymptotics; Bidimensional renewal risk model; Dependence; Extended regular variation; Ruin probability; Subexponential class (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715218301433
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:140:y:2018:i:c:p:23-32
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2018.04.003
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().