A probabilistic proof for Fourier inversion formula
Tak Kwong Wong and
Sheung Chi Phillip Yam
Statistics & Probability Letters, 2018, vol. 141, issue C, 135-142
Abstract:
The celebrated Fourier inversion formula provides a useful way to re-construct a regular enough, e.g. square-integrable, function via its own Fourier transform. In this article, we give the first probabilistic proof of this classical theorem, even for Euclidean spaces of arbitrary dimension. Particularly, our proof motivates why the one-half weight, for the one-dimensional case in Lemma 1, comes naturally to play due to the inherent spatial symmetry; another similar interpretation can be found in the higher dimensional analogue.
Keywords: Fourier transform; Gamma distribution; Harmonic analysis; Law of large numbers; Saddle-point approximation; Solid angle (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715218302153
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:141:y:2018:i:c:p:135-142
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2018.05.028
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().