A proof of the transfer-current theorem in absence of reversibility
L. Avena and
A. Gaudillière
Statistics & Probability Letters, 2018, vol. 142, issue C, 17-22
Abstract:
The transfer-current theorem is a well-known result in probability theory stating that edges in a uniform spanning tree of an undirected graph form a determinantal process with kernel interpretable in terms of flows. Its original derivation due to Burton and Pemantle (1993) is based on a clever induction using comparison of random walks with electrical networks. Several variants of this celebrated result have recently appeared in the literature. In this paper we give an elementary proof of an extension of this theorem when the underlying graph is directed, irreducible and finite. Further, we give a characterization of the corresponding determinantal kernel in terms of flows extending the kernel given by Burton–Pemantle to the non-reversible setting.
Keywords: Finite networks; Uniform spanning tree; Spanning forests; Determinantal processes; Transfer current theorem (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016771521830230X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:142:y:2018:i:c:p:17-22
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2018.06.007
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().