Semi-functional partial linear quantile regression
Hui Ding,
Zhiping Lu,
Jian Zhang and
Riquan Zhang
Statistics & Probability Letters, 2018, vol. 142, issue C, 92-101
Abstract:
Semi-functional partial linear model is a flexible model in which a scalar response is related to both functional covariate and scalar covariates. We propose a quantile estimation of this model as an alternative to the least square approach. We also extend the proposed method to kNN quantile method. Under some regular conditions, we establish the asymptotic normality of quantile estimators of regression coefficient. We also derive the rates of convergence of nonparametric function. Finite-sample performance of our estimation is compared with least square approach via a Monte Carlo simulation study. The simulation results indicate that our method is much more robust than the least square method. A real data example about spectrometric data is used to illustrate that our model and approach are promising.
Keywords: Functional data analysis; Partial linear; Quantile regression (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715218302505
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:142:y:2018:i:c:p:92-101
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2018.07.007
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().