An extremal property of the normal distribution, with a discrete analog
Erwan Hillion,
Oliver Johnson and
Adrien Saumard
Statistics & Probability Letters, 2019, vol. 145, issue C, 181-186
Abstract:
We give a new proof, using only the Brascamp–Lieb inequality, of the fact that the Gaussian measure is the only strong log-concave measure having a strong log-concavity parameter equal to its covariance matrix. We unify the continuous and discrete settings by also giving a similar characterization of the Poisson measure in the discrete case, using “Chebyshev’s other inequality”. We briefly discuss how these results relate to Stein and Stein–Chen methods for Gaussian and Poisson approximation, and to the Bakry–Émery calculus.
Keywords: Characterization of laws; Normal distribution; Poisson distribution; Log-concavity; Brascamp–Lieb inequality,; Chebychev’s other inequality (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715218302931
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:145:y:2019:i:c:p:181-186
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2018.08.018
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().