Geometric dispersion models with real quadratic v-functions
Rahma Abid,
Célestin C. Kokonendji and
Afif Masmoudi
Statistics & Probability Letters, 2019, vol. 145, issue C, 197-204
Abstract:
Geometric dispersion models, characterized by their v-functions, are recently introduced arising from geometric sums of exponential dispersion models and they exhibit many potential applications. In this paper, we classify all the real quadratic v-functions. Up to affinity, there are only six types of such models with unbounded domain: asymmetric Laplace, geometric and the four remaining ones are obtained by the exponential mixtures of Poisson, gamma, negative binomial and generalized hyperbolic secant distributions. Further, we find the seventh one which is geometric hybrid distribution, purely a quadratic v-function on bounded domain and, classically steep as well as unbounded ones but not geometric-steep.
Keywords: Exponential mixture distribution; G-steepness; Geometric cumulant function; Quadratic variance function (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715218303092
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:145:y:2019:i:c:p:197-204
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2018.09.010
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().