On LR simultaneous test of high-dimensional mean vector and covariance matrix under non-normality
Zhenzhen Niu,
Jiang Hu,
Zhidong Bai and
Wei Gao
Statistics & Probability Letters, 2019, vol. 145, issue C, 338-344
Abstract:
In this paper, we primarily focus on simultaneous testing mean vector and covariance matrix with high-dimensional non-Gaussian data, based on the classical likelihood ratio test. Applying the central limit theorem for linear spectral statistics of sample covariance matrices, we establish new modification for the likelihood ratio test, and find that this modified test converges in distribution to normal distribution, when the dimension p tends to infinity, proportionate to the sample size n under the null hypothesis. Furthermore, we conduct a simulation study to examine the performance of the test and compare it with other tests proposed in past studies. As the simulation results show, our empirical powers are clearly superior to those of other tests in a series of settings.
Keywords: High-dimension; Simultaneous test; Mean vector; Covariance matrix; Non-Gaussian distribution; RMT (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715218303249
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:145:y:2019:i:c:p:338-344
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2018.10.008
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().