EconPapers    
Economics at your fingertips  
 

A note on large deviation probabilities for empirical distribution of branching random walks

Wanlin Shi

Statistics & Probability Letters, 2019, vol. 147, issue C, 18-28

Abstract: We consider a branching random walk on R started from the origin. Let Zn(⋅) be the counting measure which counts the number of individuals at the nth generation located in a given set. For any interval A⊂R, it is well known that Zn(nA)Zn(R) converges a.s. to ν(A) under some mild conditions, where ν is the standard Gaussian measure. In this note, we study the convergence rate of PZ̄nnσ2A−ν(A)≥Δ,for a small constant Δ∈(0,1−ν(A)). Our work completes the results in Chen and He (2017) and Louidor and Perkins (2015), where the step size of the underlying walk is assumed to have Weibull tail, Gumbel tail or be bounded.

Keywords: Empirical distribution; Branching random walk; Böttcher case; Large deviation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715218303845
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:147:y:2019:i:c:p:18-28

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2018.11.029

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:147:y:2019:i:c:p:18-28