A note on large deviation probabilities for empirical distribution of branching random walks
Wanlin Shi
Statistics & Probability Letters, 2019, vol. 147, issue C, 18-28
Abstract:
We consider a branching random walk on R started from the origin. Let Zn(⋅) be the counting measure which counts the number of individuals at the nth generation located in a given set. For any interval A⊂R, it is well known that Zn(nA)Zn(R) converges a.s. to ν(A) under some mild conditions, where ν is the standard Gaussian measure. In this note, we study the convergence rate of PZ̄nnσ2A−ν(A)≥Δ,for a small constant Δ∈(0,1−ν(A)). Our work completes the results in Chen and He (2017) and Louidor and Perkins (2015), where the step size of the underlying walk is assumed to have Weibull tail, Gumbel tail or be bounded.
Keywords: Empirical distribution; Branching random walk; Böttcher case; Large deviation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715218303845
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:147:y:2019:i:c:p:18-28
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2018.11.029
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().