On the quasi-ergodic distribution of absorbing Markov processes
Guoman He,
Hanjun Zhang and
Yixia Zhu
Statistics & Probability Letters, 2019, vol. 149, issue C, 116-123
Abstract:
In this paper, we give a sufficient condition for the existence of a quasi-ergodic distribution for absorbing Markov processes. Using an orthogonal-polynomial approach, we prove that the previous main result is valid for the birth–death process on the nonnegative integers with 0 an absorbing boundary and ∞ an entrance boundary. We also show that the quasi-ergodic distribution is stochastically larger than the unique quasi-stationary distribution in the sense of monotone likelihood-ratio ordering for the birth–death process.
Keywords: Process with absorption; Quasi-ergodicity; Quasi-stationary distribution; Birth–death process (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715219300513
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:149:y:2019:i:c:p:116-123
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2019.02.001
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().