EconPapers    
Economics at your fingertips  
 

Limiting distribution of the maximal spacing when the density function admits a positive minimum

Philippe Barbe

Statistics & Probability Letters, 1992, vol. 14, issue 1, 53-60

Abstract: Let X1, X2,... be a sequence of random variables with common distribution F, and let f be the density function of F. Let X1,n [less-than-or-equals, slant] ... [less-than-or-equals, slant] Xn,n be the order statistics of X1,..., Xn and let Mn = max 2 [less-than-or-equals, slant] i [less-than-or-equals, slant] nXi,n - Xi-1,n be the maximal spacing. We assume that f has a positive minimum in x0 and that f(x0 + h) = f(x0) + hrd sgn(h)(1 + o(1)) when h --> 0. We prove that limn-->[infinity]P[nMn [less-than-or-equals, slant] x + an] = exp(-e-[phi]x) where [phi] = f(x0 and an = [phi]-1 log n - [phi]-1r-1 log log n + [phi]-1 log(r-1d-1/r[Gamma](1/r)[phi]1/r).

Keywords: Maximal; spacing; distribution; function; of; the; spacings (search for similar items in EconPapers)
Date: 1992
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0167-7152(92)90210-V
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:14:y:1992:i:1:p:53-60

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:14:y:1992:i:1:p:53-60