Sharpness for inhomogeneous percolation on quasi-transitive graphs
Thomas Beekenkamp and
Tim Hulshof
Statistics & Probability Letters, 2019, vol. 152, issue C, 28-34
Abstract:
In this note we study the phase transition for percolation on quasi-transitive graphs with quasi-transitive inhomogeneous edge-retention probabilities. A quasi-transitive graph is an infinite graph with finitely many different “types” of edges and vertices. We prove that the transition is sharp almost everywhere, i.e., that in the subcritical regime the expected cluster size is finite, and that in the subcritical regime the probability of the one-arm event decays exponentially. Our proof extends the proof of sharpness of the phase transition for homogeneous percolation on vertex-transitive graphs by Duminil-Copin and Tassion (2016) and the result generalizes previous results of Antunović and Veselić (2008) and Menshikov (1986).
Keywords: Percolation; Phase transition; Inhomogeneous (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715219300896
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:152:y:2019:i:c:p:28-34
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2019.03.013
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().