Poisson Lindley process and its main properties
Ji Hwan Cha
Statistics & Probability Letters, 2019, vol. 152, issue C, 74-81
Abstract:
Until now, the nonhomogeneous Poisson process has been intensively applied in various practical applications due to its merits. However, at the same time, it has also critical limitations in applications. To overcome these limitations, a new counting process model (called Poisson Lindley Process) is developed. It will be shown that this new counting process model does not have such limitations. Some basic stochastic properties are derived. In addition, a new concept for positive dependent increments is defined and the dependence structure is analyzed. Some of the properties obtained in this paper will be stated in general forms. One of the important contributions of this paper is to provide a new counting process model which allows explicit expression of the likelihood function.
Keywords: Stochastic processes; Poisson Lindley process; Stochastic properties; Positive dependence; Compound Poisson Lindley process (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715219301117
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:152:y:2019:i:c:p:74-81
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2019.04.008
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().