EconPapers    
Economics at your fingertips  
 

Convergence rates of kernel density estimates in particle filtering

David Coufal

Statistics & Probability Letters, 2019, vol. 153, issue C, 164-170

Abstract: Bounds on convergence rates of kernel density estimates in particle filtering are specified. The kernel density estimates are shown to be efficient for the Sobolev class of filtering densities. The upper bounds are established using Fourier analysis whilst the lower ones rely on tools of information theory.

Keywords: Particle filtering; Kernel density estimates; Convergence rates (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715219301713
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:153:y:2019:i:c:p:164-170

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2019.06.013

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:153:y:2019:i:c:p:164-170