A note on vague convergence of measures
Bojan Basrak and
Hrvoje Planinić
Statistics & Probability Letters, 2019, vol. 153, issue C, 180-186
Abstract:
We propose a new approach to vague convergence of measures based on the general theory of boundedness due to Hu (1966). The article explains how this connects and unifies several frequently used types of vague convergence from the literature. Such an approach allows one to translate already developed results from one type of vague convergence to another. We further analyze the corresponding notion of vague topology and give a new and useful characterization of convergence in distribution of random measures in this topology.
Keywords: Boundedly finite measures; Vague convergence; w#–convergence; Random measures; Convergence in distribution; Lipschitz continuous functions (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715219301622
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:153:y:2019:i:c:p:180-186
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2019.06.004
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().