ε-Nash equilibrium in stochastic differential games with mean-field interaction and controlled jumps
Chiara Benazzoli,
Luciano Campi and
Luca Di Persio
Statistics & Probability Letters, 2019, vol. 154, issue C, -
Abstract:
We consider a symmetric n-player nonzero-sum stochastic differential game with jump–diffusion dynamics and mean-field type interaction among the players. Under the assumption of existence of a regular Markovian solution for the corresponding limiting mean-field game, we construct an approximate Nash equilibrium for the n-player game for n large enough, and provide the rate of convergence. This extends to a class of games with jumps classical results in mean-field game literature. This paper complements our previous work Benazzol et al. (2017) on the existence of solutions of mean-field games for jump–diffusions.
Keywords: Stochastic differential games; Nash equilibrium; Mean-field games; Marked point processes; Jump measures (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715219301506
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:154:y:2019:i:c:21
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2019.05.021
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().