Transportation cost inequality for backward stochastic differential equations
Khaled Bahlali,
Brahim Boufoussi and
Soufiane Mouchtabih
Statistics & Probability Letters, 2019, vol. 155, issue C, -
Abstract:
We prove that probability laws of a backward stochastic differential equation, satisfy a quadratic transportation cost inequality under the uniform metric. That is, a comparison of the Wasserstein distance from the law of the solution of the equation to any other absolutely continuous measure with finite relative entropy. From this we derive concentration properties of Lipschitz functions of the solution.
Keywords: Backward stochastic differential equations; Concentration of measure; Transportation-information inequality; Girsanov transformation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715219302329
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:155:y:2019:i:c:1
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2019.108586
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().