On perturbations of non-diagonalizable stochastic matrices of order 3
P.J. Pauwelyn and
M.A. Guerry
Statistics & Probability Letters, 2020, vol. 157, issue C
Abstract:
We show that it is possible for every non-diagonalizable stochastic 3 × 3 matrix to be perturbed into a diagonalizable stochastic matrix with the eigenvalues, arbitrarily close to the eigenvalues of the original matrix, with the same principal eigenspaces. An algorithm is presented to determine a perturbation matrix, which preserves these spectral properties. Additionally, a relation is proved between the eigenvectors and generalized eigenvectors of the original matrix and the perturbed matrix.
Keywords: Stochastic matrices; Non-diagonalizable matrices; Perturbation theory; Markov chains (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715219302792
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:157:y:2020:i:c:s0167715219302792
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2019.108633
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().