Estimating the complexity index of functional data: Some asymptotics
E.G. Bongiorno,
A. Goia and
P. Vieu
Statistics & Probability Letters, 2020, vol. 161, issue C
Abstract:
Consider a random curve valued in a general semi-metric space whose small-ball probability factorizes isolating the spatial and the volumetric term. Assume that the latter is specified and interprets its parameters as complexity indexes. An index estimate is constructed by comparing nonparametric versus parametric estimates of the volumetric factor, and various asymptotics (including weak convergence and asymptotic normality) are stated by means of U-statistics tools. As a by-product, new asymptotic results are stated for surrogate density estimation.
Keywords: Functional sample; Complexity index; Small ball probability; U-statistics (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715220300341
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:161:y:2020:i:c:s0167715220300341
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2020.108731
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().