M estimators based on the probability integral transformation with applications to count data
Marina Valdora and
Víctor Yohai
Statistics & Probability Letters, 2020, vol. 162, issue C
Abstract:
M estimators based on the probability integral transformation for discrete distributions are introduced and their asymptotic properties are proved. The proposed estimators are applied to count data in a simulation study and in a real data set of hospital lengths of stay.
Keywords: Robust estimators; Poisson; Negative binomial; Count data; Probability integral transformation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715220300547
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:162:y:2020:i:c:s0167715220300547
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2020.108751
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().