A note on new Bernstein-type inequalities for the log-likelihood function of Bernoulli variables
Yunpeng Zhao
Statistics & Probability Letters, 2020, vol. 163, issue C
Abstract:
We prove a new Bernstein-type inequality for the log-likelihood function of Bernoulli variables. In contrast to classical Bernstein’s inequality and Hoeffding’s inequality when applied to this log-likelihood, the new bound is independent of the parameters of the Bernoulli variables and therefore does not blow up as the parameters approach 0 or 1. The new inequality strengthens certain theoretical results on likelihood-based methods for community detection in networks and can be applied to other likelihood-based methods for binary data.
Keywords: Concentration inequality; Bernstein-type inequality; Bernoulli distribution; Moment generating function (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715220300821
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:163:y:2020:i:c:s0167715220300821
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2020.108779
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().