Adjusted jackknife empirical likelihood for stationary ARMA and ARFIMA models
Xiuzhen Zhang,
Zhiping Lu,
Yangye Wang and
Riquan Zhang
Statistics & Probability Letters, 2020, vol. 165, issue C
Abstract:
In this paper, jackknife empirical likelihood is proposed to be applied in stationary time series models. By applying the jackknife method to Whittle estimator, we obtain new asymptotically independent pseudo samples which will be used to construct linear constraints for empirical likelihood. The jackknife empirical log-likelihood ratio is shown to follow a chi-square limiting distribution, which validates the corresponding confidence regions asymptotically. However, similar to the drawbacks of empirical likelihood, this method suffers from the non-definition problem and the inaccurate coverage probability in constructing confidence regions. So we further develop the adjusted jackknife empirical likelihood borrowing the idea of Chen et al. (2008) to improve the performance of the jackknife empirical likelihood. With a specific adjustment level, the adjusted jackknife empirical likelihood achieves a more high-order coverage precision than the classical jackknife empirical likelihood does and our simulations corroborate this point.
Keywords: Adjusted jackknife empirical likelihood; Empirical likelihood; Jackknife empirical log-likelihood ratio; Stationary time series; Whittle estimator (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715220301334
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:165:y:2020:i:c:s0167715220301334
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2020.108830
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().