EconPapers    
Economics at your fingertips  
 

On the entrance at infinity of Feller processes with no negative jumps

Clément Foucart, Pei-Sen Li and Xiaowen Zhou

Statistics & Probability Letters, 2020, vol. 165, issue C

Abstract: Consider a non-explosive positive Feller process with no negative jumps. It is shown in this note that when infinity is an entrance boundary, in the sense that the entrance times of the process remain bounded when the initial value tends to infinity, the process admits a Feller extension on the compactified state space [0,∞]. Moreover, when started from infinity, the extended Markov process on [0,∞] leaves infinity instantaneously and stays finite, almost-surely. Arguments are adapted from a proof given by Kallenberg (2002) for diffusions. We also show that the process started from x converges weakly towards that started from infinity in the Skorokhod space, when x goes to infinity.

Keywords: Coming down from infinity; Entrance boundary; Feller property; Weak convergence (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715220301620
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:165:y:2020:i:c:s0167715220301620

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2020.108859

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:165:y:2020:i:c:s0167715220301620