Nonparametric regression estimate with Berkson Laplace measurement error
Jianhong Shi,
Xiuqin Bai and
Weixing Song
Statistics & Probability Letters, 2020, vol. 166, issue C
Abstract:
In this paper, a nonparametric estimator for the regression function is constructed when the covariates are contaminated with the multivariate Laplace measurement error. The proposed estimator is based upon a simple relationship between the regression function and the conditional expectation of the regression function given the proxy data, as well as the second derivative of this expectation. Large sample properties of the proposed estimator, including the consistency and asymptotic normality, are established. The theoretical optimal bandwidth based on asymptotic integrated mean squared error is derived, and a data-driven bandwidth selector is recommended. Finite sample performance of the proposed estimator is evaluated by a simulation study.
Keywords: Berkson measurement error; Local linear smoother; Multivariate Laplace distribution (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016771522030167X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:166:y:2020:i:c:s016771522030167x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2020.108864
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().