On the sojourn time of a generalized Brownian meander
F. Iafrate and
E. Orsingher
Statistics & Probability Letters, 2021, vol. 168, issue C
Abstract:
In this paper we study the sojourn time on the positive half-line up to time t of a drifted Brownian motion with starting point u and subject to the condition that min0≤z≤lB(z)>v, with u>v. This process is a drifted Brownian meander up to time l and then evolves as a free Brownian motion. We also consider the sojourn time of a bridge-type process, where we add the additional condition to return to the initial level at the end of the time interval. We analyze the weak limit of the occupation functional as u↓v. We obtain explicit distributional results when the barrier is placed at the zero level, and also in the special case when the drift is null.
Keywords: Drifted Brownian meander; Brownian excursion; Feynman–Kac functional; Weak convergence; Tightness; Elastic Brownian motion (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715220302303
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:168:y:2021:i:c:s0167715220302303
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2020.108927
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().