A note on stationary bootstrap variance estimator under long-range dependence
Taegyu Kang,
Young Min Kim and
Jongho Im
Statistics & Probability Letters, 2021, vol. 169, issue C
Abstract:
The stationary bootstrap method is popularly used to compute the standard errors or confidence regions of estimators, generated from time processes exhibiting weakly dependent stationarity. Most previous stationary bootstrap methods have focused on studying large-sample properties of stationary bootstrap inference about a sample mean under short-range dependence. For long-range dependence, recent studies have investigated the properties of block bootstrap methods using overlapping and non-overlapping blocking techniques with fixed block lengths. However, the characteristics of a stationary bootstrap with random block lengths are less well-known under long-range dependence. We investigate the asymptotic property of a stationary bootstrap variance estimator for a sample mean under long-range dependence. Our theoretical and simulation results indicate that the stationary bootstrap method does not have n−consistency for stationary and long-range dependent time processes.
Keywords: Bootstrap variance estimation; Long-range dependence; Stationary bootstrap (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715220302741
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:169:y:2021:i:c:s0167715220302741
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2020.108971
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().