EconPapers    
Economics at your fingertips  
 

How long does it take to see a flat Brownian path on the average?

Thomas M. Lewis and Wenbo V. Li

Statistics & Probability Letters, 1993, vol. 16, issue 5, 347-354

Abstract: Let Wt be a standard Brownian motion and define R(t, 1) = maxt-1[less-than-or-equals, slant]s[less-than-or-equals, slant]tWs-mint-1[less-than-or-equals, slant]s[less-than-or-equals, slant]t Ws for t[less-than-or-equals, slant]1. Given [var epsilon]>0, let [tau]([var epsilon])=min{t[greater-or-equal, slanted]1: R(t, 1)[less-than-or-equals, slant] [var epsilon]}. We prove that . We also give the lim inf behavior of R(t,1) and inf1[less-than-or-equals, slant]s[less-than-or-equals, slant]tR(s, 1).

Keywords: Brownian; motion; range; of; Brownian; motion; waiting; time; strong; limit; theorems (search for similar items in EconPapers)
Date: 1993
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0167-7152(93)90068-T
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:16:y:1993:i:5:p:347-354

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:16:y:1993:i:5:p:347-354