How long does it take to see a flat Brownian path on the average?
Thomas M. Lewis and
Wenbo V. Li
Statistics & Probability Letters, 1993, vol. 16, issue 5, 347-354
Abstract:
Let Wt be a standard Brownian motion and define R(t, 1) = maxt-1[less-than-or-equals, slant]s[less-than-or-equals, slant]tWs-mint-1[less-than-or-equals, slant]s[less-than-or-equals, slant]t Ws for t[less-than-or-equals, slant]1. Given [var epsilon]>0, let [tau]([var epsilon])=min{t[greater-or-equal, slanted]1: R(t, 1)[less-than-or-equals, slant] [var epsilon]}. We prove that . We also give the lim inf behavior of R(t,1) and inf1[less-than-or-equals, slant]s[less-than-or-equals, slant]tR(s, 1).
Keywords: Brownian; motion; range; of; Brownian; motion; waiting; time; strong; limit; theorems (search for similar items in EconPapers)
Date: 1993
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0167-7152(93)90068-T
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:16:y:1993:i:5:p:347-354
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().