Economics at your fingertips  

Quantization coefficients for uniform distributions on the boundaries of regular polygons

Joel Hansen, Itzamar Marquez, Mrinal K. Roychowdhury and Eduardo Torres

Statistics & Probability Letters, 2021, vol. 173, issue C

Abstract: In this paper, we give a general formula to determine the quantization coefficients for uniform distributions defined on the boundaries of different regular m-sided polygons inscribed in a circle. The result shows that the quantization coefficient for the uniform distribution on the boundary of a regular m-sided polygon inscribed in a circle is an increasing function of m, and approaches to the quantization coefficient for the uniform distribution on the circle as m tends to infinity.

Keywords: Uniform distribution; Optimal sets; Quantization error; Quantization coefficient; Regular polygon (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2021.109060

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

Page updated 2021-06-30
Handle: RePEc:eee:stapro:v:173:y:2021:i:c:s0167715221000225