A general approach to sample path generation of infinitely divisible processes via shot noise representation
Reiichiro Kawai
Statistics & Probability Letters, 2021, vol. 174, issue C
Abstract:
We establish a sample path generation scheme in a unified manner for general multivariate infinitely divisible processes based on shot noise representation of their integrators. The approximation is derived from the decomposition of the infinitely divisible process to three independent components based on jump sizes and timings: the large jumps over a compact time interval, small jumps over the entire time interval and large jumps over an unbounded time interval. The first component is taken as the approximation and is much simpler than simulation of general Gaussian processes, while the latter two components are analyzed as the error. We derive technical conditions for the two error terms to vanish in the limit and for the scaled component on small jumps to converge to a Gaussian process so as to enhance the accuracy of the weak approximation. We provide an extensive collection of examples to highlight the wide practicality of the proposed approach.
Keywords: Infinitely divisible laws; Lévy processes; Fractional Lévy motions; Shot noise representation; Infinitely divisible processes (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715221000535
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:174:y:2021:i:c:s0167715221000535
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2021.109091
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().