Deriving the central limit theorem from the de Moivre–Laplace theorem
Calvin Wooyoung Chin
Statistics & Probability Letters, 2022, vol. 182, issue C
Abstract:
The de Moivre–Laplace theorem is a special case of the central limit theorem for Bernoulli random variables, and can be proved by direct computation. We deduce the central limit theorem for any random variable with finite variance from the de Moivre–Laplace theorem. Our proof does not use advanced notions such as characteristic functions, the Brownian motion, or stopping times.
Keywords: Central limit theorem; de Moivre–Laplace theorem; Mixture distributions (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715221002558
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:182:y:2022:i:c:s0167715221002558
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2021.109293
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().