EconPapers    
Economics at your fingertips  
 

Sharp and simple bounds for the raw moments of the binomial and Poisson distributions

Thomas D. Ahle

Statistics & Probability Letters, 2022, vol. 182, issue C

Abstract: We prove the inequality E[(X/μ)k]≤(k/μlog(1+k/μ))k≤exp(k2/(2μ)) for sub-Poissonian random variables X, such as Binomially or Poisson distributed variables, with mean μ. The asymptotic behaviour E[(X/μ)k]=1+O(k2/μ) matches a lower bound of 1+Ω(k2/μ) for small k2/μ. This improves over previous uniform raw moment bounds by a factor exponential in k.

Keywords: Random variables; Moments; Asymptotics (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715221002662
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:182:y:2022:i:c:s0167715221002662

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2021.109306

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:182:y:2022:i:c:s0167715221002662