Parameter estimation in CKLS model by continuous observations
Yuliya Mishura,
Kostiantyn Ralchenko and
Olena Dehtiar
Statistics & Probability Letters, 2022, vol. 184, issue C
Abstract:
We consider a stochastic differential equation of the form drt=(a−brt)dt+σrtβdWt, where a, b and σ are positive constants, β∈(12,1). We study the estimation of an unknown drift parameter (a,b) by continuous observations of a sample path {rt,t∈[0,T]}. We prove the strong consistency and asymptotic normality of the maximum likelihood estimator. We propose another strongly consistent estimator, which generalizes an estimator proposed in Dehtiar et al. (2021) for β=12. The identification of the diffusion parameters σ and β is discussed as well.
Keywords: CKLS model; Continuous observations; Parameter estimation; Strong consistency; Asymptotic normality (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715222000153
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:184:y:2022:i:c:s0167715222000153
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2022.109391
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().