Epidemic change-point detection in general causal time series
Mamadou Lamine Diop and
William Kengne
Statistics & Probability Letters, 2022, vol. 184, issue C
Abstract:
We consider an epidemic change-point detection in a large class of causal time series models, including among other processes, AR(∞), ARCH(∞), TARCH(∞), ARMA-GARCH. A test statistic based on the Gaussian quasi-maximum likelihood estimator of the parameter is proposed. It is shown that, under the null hypothesis of no change, the test statistic converges to a distribution obtained from a difference of two Brownian bridge and diverges to infinity under the epidemic alternative. Numerical results for simulation and real data example are provided.
Keywords: Causal processes; Epidemic change-point; Semi-parametric statistic; Quasi-maximum likelihood estimator (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715222000323
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:184:y:2022:i:c:s0167715222000323
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2022.109416
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().