Stochastic comparison for elliptically contoured random fields
Tianshi Lu,
Juan Du and
Chunsheng Ma
Statistics & Probability Letters, 2022, vol. 189, issue C
Abstract:
This paper presents necessary and sufficient conditions for the peakedness comparison and convex ordering between two elliptically contoured random fields about their centers. A somewhat surprising finding is that the peakedness comparison for the infinite dimensional case differs from the finite dimensional case. For example, a Student’s t distribution is known to be more heavy-tailed than a normal distribution, but a Student’s t random field and a Gaussian random field are not comparable in terms of the peakedness. In particular, the peakedness comparison and convex ordering are made for isotropic elliptically contoured random fields on compact two-point homogeneous spaces.
Keywords: Compact two-point homogeneous space; Convex order; Elliptically contoured random field; Gaussian random field; Peakedness (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715222001407
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:189:y:2022:i:c:s0167715222001407
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2022.109594
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().