The distribution of the number of isolated nodes in the 1-Dimensional soft random geometric graph
Michael Wilsher,
Carl P. Dettmann and
Ayalvadi J. Ganesh
Statistics & Probability Letters, 2023, vol. 193, issue C
Abstract:
We study the number of isolated nodes in a soft random geometric graph whose vertices constitute a Poisson process on the torus of length L (the line segment [0,L] with periodic boundary conditions), and where an edge is present between two nodes with a probability which depends on the distance between them. Edges between distinct pairs of nodes are mutually independent. In a suitable scaling regime, we show that the number of isolated nodes converges in total variation to a Poisson random variable. The result implies an upper bound on the probability that the random graph is connected.
Keywords: Random graphs; Connectivity; Vehicular networks (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715222002085
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:193:y:2023:i:c:s0167715222002085
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2022.109695
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().