Quantifying the uncertainty of partitions for infinite mixture models
Aurore Lavigne and
Silvia Liverani
Statistics & Probability Letters, 2024, vol. 204, issue C
Abstract:
Bayesian clustering models, such as Dirichlet process mixture models (DPMMs), are sophisticated flexible models. They induce a posterior distribution on the set of all partitions of a set of observations. Analysing this posterior distribution is of great interest, but it comes with several challenges. First of all, the number of partitions is overwhelmingly large even for moderate values of the number of observations. Consequently the sample space of the posterior distribution of the partitions is not explored well by MCMC samplers. Second, due to the complexity of representing the uncertainty of partitions, usually only maximum a posteriori estimates of the posterior distribution of partitions are provided and discussed in the literature. In this paper we propose a numerical and graphical method for quantifying the uncertainty of the clusters of a given partition of the data and we suggest how this tool can be used to learn about the partition uncertainty.
Keywords: Dirichlet process mixture model; Bayesian methods; Clustering; Uncertainty (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715223001542
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:204:y:2024:i:c:s0167715223001542
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2023.109930
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().