EconPapers    
Economics at your fingertips  
 

On independence of time and cause

Offer Kella

Statistics & Probability Letters, 2024, vol. 204, issue C

Abstract: For two independent, almost surely finite random variables, independence of their minimum (time) and the events that either one of them is equal to the minimum (cause) is completely characterized. It is shown that, other than for trivial cases where, almost surely, either one random variable is strictly greater than the other or one is a constant and the other is greater than or equal to it, this happens if and only if both random variables are distributed like the same strictly increasing function of two independent random variables, where either both are exponentially distributed or both are geometrically distributed. This is then generalized to the multivariate case.

Keywords: Proportional hazards; g-exponential; g-geometric (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715223001682
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:204:y:2024:i:c:s0167715223001682

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2023.109944

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:204:y:2024:i:c:s0167715223001682