Pricing formula for a Barrier call option based on stochastic delay differential equation
Kyong-Hui Kim,
Jong-Kuk Kim and
Myong Guk Sin
Statistics & Probability Letters, 2024, vol. 205, issue C
Abstract:
We derive new explicit pricing formulae for a type of Barrier call option, down and in call option when underlying asset price processes are represented by a stochastic delay differential equation (hereafter “SDDE”). We note the conditional normality of a stochastic integral with respect to a Wiener process to find the joint distribution of the stochastic integral and their minimum. On the basis of this result, we obtain pricing formulae for the Barrier call option which extends ones in the classical Black-Scholes models without delay. Finally, through Monte-Carlo simulations, we demonstrate that our theoretical prices for a Barrier option are correct.
Keywords: Pricing formula; Barrier call option; Stochastic delay differential equation; Conditional normality (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715223001670
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:205:y:2024:i:c:s0167715223001670
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2023.109943
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().