An upper bound and a characterization for Gini’s mean difference based on correlated random variables
Roberto Vila,
Narayanaswamy Balakrishnan and
Helton Saulo
Statistics & Probability Letters, 2024, vol. 207, issue C
Abstract:
In this paper, we obtain an upper bound for the Gini mean difference based on mean, variance and correlation for the case when the variables are correlated. We also derive some closed-form expressions for the Gini mean difference when the random variables have an absolutely continuous joint distribution. We then examine some particular examples based on elliptically contoured distributions, and specifically with multivariate normal and Student-t distributions.
Keywords: Gini’s mean difference; Gini index; Correlation; Elliptically contoured distributions; Exchangeable variables; Skew symmetric distribution (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715224000014
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:207:y:2024:i:c:s0167715224000014
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2024.110032
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().