On ordinary least-squares methods for sample surveys
Song-Gui Wang,
Shein-Chung Chow and
Siu-Keung Tse
Statistics & Probability Letters, 1994, vol. 20, issue 3, 173-182
Abstract:
The performance of the ordinary least-squares (LS) method for two-stage sampling in regression analysis is studied. It is shown that the best linear unbiased estimator (BLUE) can be approximated by a polynomial in intracluster correlation. In particular, the least-squares estimator (LSE) is a zero-order approximation to the BLUE. To provide some insights into the approximation of the BLUE by the LSE, an upper bound for the difference between LSE and the first-order approximation to the BLUE is derived. Furthermore, bounds for the difference between the covariance matrices of the LSE and the BLUE are derived. Similar idea is applied to compare the LS and the BLU predictors of population total under a superpopulation model. For example, when the design matrix is ill-conditioned and/or the condition number of the covariance matrix of the error vector is large, the LSE has a poor performance compared to the BLUE.
Keywords: Least-squares; estimate; Best; linear; unbiased; estimate; Intracluster; correlation; Population; total; Relative; efficiency (search for similar items in EconPapers)
Date: 1994
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0167-7152(94)90039-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:20:y:1994:i:3:p:173-182
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().