EconPapers    
Economics at your fingertips  
 

Rate of convergence of trinomial formula to Black–Scholes formula

Yuttana Ratibenyakool and Kritsana Neammanee

Statistics & Probability Letters, 2024, vol. 213, issue C

Abstract: The Black–Scholes formula which was introduced by three economists, Black et al. (1973) has been widely used to calculate the theoretical price of the European call option. In 1979, Cox, Ross and Rubinstein (Cox et al., 1979) gave the binomial formula which is a tool to find the price of European option and showed that this formula converges to the Black–Scholes formula as the number of periods (n) converges to infinity. In 1988, Boyle investigated another formula that is used to find the price of European option, that is the trinomial formula. In 2015, Puspita et al. gave examples to show that the trinomial formula is closed to the Black–Scholes formula. After that, Ratibenyakool and Neammanee (2020) gave the rigorous proof of this convergence. In this paper, we show that the rate of convergence is of order 1n.

Keywords: Trinomial formula; Binomial formula; Black–Scholes formula; Option pricing (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715224001366
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:213:y:2024:i:c:s0167715224001366

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2024.110167

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:213:y:2024:i:c:s0167715224001366